

PROGRAMMABLE NETWORK CONVERTER ANALYZERS

IPL144

UTILIZATION

AND CONFIGURATION

HANDBOOK

LOREME 12, rue des Potiers d'Etain Actipole BORNY - B.P. 35014 - 57071 METZ CEDEX 3 Telephone 03.87.76.32.51 - Fax 03.87.76.32.52 Contact: Commercial@Loreme.fr - Technique@Loreme.fr

TABLEDESMATIERES

DIALOGUE-TERMINALMODE	page 1
1) PSION serie 2	page 1
1) PSION Workabout	page 1
2) PC with DOS	page 2
3) PC with WINDOWS 3.11	page 2
4) PC with WINDOWS 95/98	page 2
5) Display mode	page 2
DEVICEPRESENTATION	page 3
USERINTERFACE	page 3
CONFIGURATION	page 4
1) Method	page 4
1.1) Menu selection	page 4
1.2) Parameter selection	page 4
1.3) Value acquisition	page 5
2) Language	page 5
3) Caliber	page 5
4) Network	page 5
5) Energy	page 5
6) Time	page 5
6.1) Energy meter	page 5
6.2) Time range	page 6
7) Slots	page 6
7.1) Analogical slot	page 6
7.2) Relay slot	page 6
7.2.1) Alarm	page 6
7.2.2) Energy meter	page 7
7.2.3) Direct control	page 7
7.3) Logical slot	page 7
7.4) RS 485 slot	page 7
INITIAL ANGLE	page 7
EMCCONSIDERATION	page 8
1) Introduction	page 8
2) Recommandations of use	page 8
2.1) General remarks	page 8
2.2) Power supply	page 8
2.3) Inputs / Outputs	page 8
PC-ANALYZER LINK	page 8
	page 0 page 9
	page 3 page 12
RS485 COMMUNICATION MODBUS	page 12

DIALOGUE-TERMINAL MODE

Numeric devices can converse with all terminal emulation mode systems. As the dialogue and configuration part are in device's memory, no software or specific interface are necessary for their configuration.

Two terminal emulation mode systems are presented: the PSION and the PC. Differents procedures are enumerated below.

1) PSION serie 2:

First of all manipulation, plug in "COMMS LINK" on the PSION. To start up the PSION, push on the **"ON"** key.

The PSION displays this menu:

RECH SAUV AGENDA CALC PROG EFFACE

Push on the "C" key until the menu "COMMS", and validate with "EXE". The PSION displays this menu: TRANSMIT RECEIVE SETUP TERM AUTO

Push on the **"T"** key until the menu **"TERM"**, and validate with **"EXE"** to obtain a empty screen. The PSION is now in terminal mode and you can link the PSION to the device, by plugging in the RS 232. The measure is displayed, to configurate, push on the **"C"** key.

2) PSION Workabout:

To start up the PSION push on the "**ON**" key. At the presentation, push on the "**MENU**" key. Select "**SYSTEME SCREEN**" mode and validate by "**ENTER**".

Icons display: DATA CALC SHEET PROGRAM COMMS

Select icon **"COMMS"** and validate by **"ENTER"**, on display, a cursor flashing. The **PSION** is in terminal mode. Plug in "RS232" on PC. The measure is displayed and, to configure, push **"C"** on keyboard.

To quit terminal mode and switch off PSION, push on "**OFF**" key. When you restart the **PSION** in terminal mode, it start automatically and directely in terminal mode without re-start configuration.

3) PC with DOS:

The terminal emulation mode software with DOS "**IBM®-PC KERMIT-MS V2.26**" is available at simple request. After the PC has booted, type **"a: K"** then press **"ENTER"**. The PC is in terminal mode and uses COM port 1. If you want to use the second serial communication port (COM2), type:

"A:KERMIT" and "ENTER" to launch the program, "SET PORT 2" and "ENTER" to select COM2, "SET BAUD 9600" and "ENTER" to select speed, "CONNECT" and "ENTER", to enter in the terminal mode.

The PC is now emulating a terminal and may be connected to the device by plugging in the RS 232 link cable.

Measure is now displayed and configuration's acces allowed by a press on "C" key.

To quit kermit, press **"CTRL-\$"** then press the key **"C"**. When the message KERMIT-MS appears, type **"QUIT"** to return to MS-DOS commands.

4) PC with WINDOWS 3.11:

Start **WINDOWS** and in "**ACCESSOIRES**" group, double-click on wich get access to terminal mode.

In "**PARAMETRES**" menubar, click on "**COMMUNICATION**" sub-menu. We access to the following windows. Configure communication parameters, 9600 bauds, no parity, 8 data bits, 1 stop bit, no flow control and validate.

Begin terminal emulation by click on "PARAMETRES", then on "EMULATION TERMINAL". the following board is displayed.

😑 Emulation de te	rminal
○ <u>T</u> TY (Generic) ④ <u>DEC VT-100 (ANSI)</u> ○ DEC VT- <u>5</u> 2	OK Annuler

06 07 08 O5 Parité <u>C</u>ontrôle de flux Ports Aucun + Aucun ⊖ Xon/Xoff COM1 ○ Matériel 🔿 Impaire Aucun Marque Espace Contrôle de parité Détection de porteuse Choose terminal mode DEC-VT-100(ANSI) and validate. The PC is in terminal mode, connect it

Communications

0 1200

0 19200

Bits d'arrêt

0600

0039

OK

Annuler

to device by plugging the RS232 link cable. Measure is now displayed and to access at configuration, press on **"C"** key.

-Vitesse de transmission

○110

02400

Bits de données

() 300

0 4800

5) PC with WINDOWS 95/98:

- To start up terminal program:
- 1 Clique on button "START",
- 2-Tick off "PROGRAMS". "ACCESSOIRES", and "HYPER TERMINAL",
- 3 Click twice on

Hypertrm.exe

The following window is displayed. Enter a name for a new connection and validate, the hereunder window will appear

Configure communication parameters, 9600

control and validate. The PC is in terminal

mode, connect to device by plugging in the

RS232 link cable. Measure is now displayed

bauds, no parity, 8 data bits, 1 stop bit, no flow

Numéro de téléphone	? ×
Entrez les détails du nur voulez composer :	néro de téléphone que vous
<u>C</u> ode pays :	V
<u>I</u> ndicatif :	
Numéro de téléphone :	
Co <u>n</u> necter en utilisant :	Diriger vers Com 1

Choose a communication port and validate. The belowing windows is displayed

Paramètres	
Bit <u>s</u> par seconde :	9600
<u>B</u> its de données :	8
<u>P</u> arité :	Aucun
Bits d'arrêţ :	1
<u>C</u> ontrôle de flux :	Aucun
<u>A</u> vancés	<u>R</u> établir les options par défaut
	OK Annuler Appliquer

and to access at the configu "C" key .	ration, press on
HyperTerminal X Voulez-vous enregistrer la session LOREME ?	When quitting following wind
Qui Non Annuler	devices withou

When quitting HyperTerminal will be diplayed the following window. To dialog with all LOREME devices without re-start all the method, click on **"OK"**

To load LOREME session directly:

- 1 Click on button "Start".
- 2 Tick off "Programs", "Accessories", and "HyperTerminal".

LOREME.ht

6) Visualization:

When switching on, device is automatically put in measure mode.

On 2 lines display mode, the next messages will be displayed:

CONFIGURATION	Accessing to configuration mode
TAPEZ SUR C	Press on "C" key

Access keyboard keys:

- device configuration access. "C"
- full-screen mode (PC only), "\$"
- "Enter" 2 lines display mode,

The presentation of the measures in a full-screen mode is as follows:

L1	L2	L3	3L
230 V 398 V	229 V 393 V	225 V 394 V	228 V 395 V
1.13 A	1.26 A	1.24 A	1.21 A
50 Hz	50 Hz	50 Hz	50 Hz
0.99	0.99	0.99	0.99
260 W	287 W	279 W	829 W
14 Var	15 Var	17 Var	46 Var
259 VA	287 VA	279 VA	829 VA
54 kW.h	47 kW.h	49 kW.h	150 kW.h
0 kW.h	0 kW.h	0 kW.h	0 kW.h
0 kvar.h	0 kvar.h	0 kvar.h	0 kvar.h
5 kvar.h	4 kvar.h	4 kvar.h	13 kvar.h
	230 V 398 V 1.13 A 50 Hz 0.99 260 W 14 Var 259 VA 54 kW.h 0 kW.h 0 kw.h	230 V 229 V 398 V 393 V 1.13 A 1.26 A 50 Hz 50 Hz 0.99 0.99 260 W 287 W 14 Var 15 Var 259 VA 287 VA 54 kW.h 47 kW.h 0 kwar.h 0 kwar.h	230 V 229 V 225 V 398 V 393 V 394 V 1.13 A 1.26 A 1.24 A 50 Hz 50 Hz 50 Hz 0.99 0.99 0.99 260 W 287 W 279 W 14 Var 15 Var 17 Var 259 VA 287 VA 279 VA 54 kW.h 47 kW.h 49 kW.h 0 kwar.h 0 kvar.h 0 kvar.h

UNBALANCED TRIPHASE NETWORK WITH NEUTRAL CT RATIO 1.00 1.00

PT RATIO

Full-screen mode is available only on a PC with KERMIT software. It isn't possible to use this mode with WINDOWS. Full-screen mode slows down the device. It is recommended to guit this mode when it is not necessary.

DEVICE PRESENTATION

The purpose of this configuration handbook is to allow to become familiar with the functions supplied by the device.

Device is provided of functions required to the analyst of every networks. It possesses 3 voltage inputs and 3 current inputs totaly isolated among it, which allow realization of direct or alternating, monophased or triphased, balanced or unbalanced, with or without neutral measures.

It can receive up to 8 slots. Number and types are listed below and must be specified at the order:

- analogical slot, current, voltage,
- relay slot, alarm, energy meter, direct control,
- logical slot,
- communication slot, RS485 MODBUS / JBUS.

USER INTERFACE

The front side of IPL144 is composed of:

- 1 LCD display, back-lighted 4 lines x 16 characters,
- 1 jack 3.5 plug for RS 232 link,
- 3 reds leds for time range
 - off-peak hours,
 - on-peak hours,
 - · peak hours.

- 5 push buttons:

- push buttons "Up" and "Down" allows to change displayed datas, measures or slots, DWN);
- push buttons "Left" et "Right" allows to change displayed tables, measures tables or slots tables,
- push buttons "Config" allows to display network or time range L. CONFIG configuration,
- a simultanous press on this two buttons allows to reset all energies meter if this function is validated in RS232 Ē configuration.

Display possibilities are:

DIRECTCONTROL

INACTIVE

10.0 s

INACTIVE

- measures display:

	Voltage - Current	Cos - Frequency	Activepower	Reactivepower
L1. L2.		0.99 50.0 Hz 0.99 50.0 Hz	1140 W 1149 W	120 VAR 115 VAR
L2. L3.		0.99 50.0 Hz	1143 W 1157 W	118 VAR
сэ. 3L.		0.99 50.0 Hz	3446 W	350 VAR
UL.				
	Apparentpower	Active energy +	Reactive energy +	- Active energy -
	1142 VA	10 KW.H	1 KVAR.H	-11 KW.H
	1150 VA	11 KW.H	1 KVAR.H	-9 KW.H
Ş	▶ 1160 VA	9 KW.H	2 KVAR.H	-10 KW.H
	3452 VA	30 KW.H	4 KVAR.H	-30 KW.H
			L	
Г	Reactive energy -	Interlinkedvoltage	1	
	-1 KVAR.H	398 V		
	-2 KVAR.H	397 V		
Ч	-1 KVAR.H	398 V		
	-4 KVAR.H	398 V		
	·			
	- slots display:			
	Slot 1	Slot 2	Slot 3	Slot 4
	SLOT 1 (ANALOG)	SLOT 2 (ANALOG)	SLOT 3 (RELAY)	SLOT4 (RELAY)
	0 V L1	0 A L1	HIGHALARM	METER
	400 V	100 A	60 kW 3L	10 kW.h 3L
	15.95 mA	12.56 mA	ACTIVE	
	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	·	· · · · · · · · · · · · · · · · · · ·	
	Slot 5	Slot 6	Slot 7	Slot 8
	SLOT 5 (RELAY)	SLOT6(LOG)	SLOT7(LOG)	SLOT 8 (RS485)

ACTIVE

230 V 229 V	4.99 A 5.00 A	displays network configuration.	CONFIG
• 6	energy:		
10 kW.h			

- configuration display:

• measure:

5.01 A

5.00 A

228 V

229 V

11 kW.h

9 kW.h

30 kW.h

A press on this button ┛ displays time range CONFIG configuration.

A press on this button

displays network

TIME: 15:27 07:00 22:00 09:00 11:00 18:00 20:00

UNBALANCED

WITHNEUTRAL TP: 10 TI: 1000

NETWORK

┛

CONFIGURATION

The handbook explains in detail differents possibilities of configuration: Language, input caliber, network, energy, time, slots. To enter configuration mode, just press "C" key.

1) Method:

At the configuration, the user is asked different types of questions. For each one, several answers are possible. You will find below the detailed description of each case.

1.1) Menu selection:

exemple:	INPUT
	Y - N

The user makes a choice by pressing the keys "**Y**" or "**N**". This choice allows to access the different menus of configuration.

1.2) Parameter selection:

exemple:	VOLTAGE (Y - N) YES	or	VOLTAGE (Y - N) NO	
Previous ch	noice = YES:	- pressing	"Y" => choice validation = YES, "الب" => choice validation = YES "N" => choice changing = NO.	,
Previous ch	oice = NO:	- pressing	"N" => choice validation = NO, " " " " " => choice validation = NO, "Y" => choice changing = YES.	

ADDRESS 12

SPEED 9600

PARITY NONE

Choice is made by pressing "Y" or "N" keys, and validation is made by pressing corresponding key to displayed answer ("Y" for YES and "N" for NO) or "," (PC)/"EXE" (PSION). Pressing key "," / EXE" without modification allows to validate the previous answer.

1.3) Value acquisition:

exemple: LOW SCALE 4 mA

Two cases are possible:

- validation without modification, just press ", / EXE",

- value modification on keyboard (simultaneous display), followed by validation with ", J EXE".

Note concerning acquisition value :

- It is possible, when a mistake is made during a value acquisition, before validating it, to go back by pressing "DEL" key (only on PSION), which redisplays the message without taking notice of the wrong value.

- In configuration mode, if there is no action, device goes back in operating mode after a two minutes delay without taking notice of modifications made before.

- In configuration mode, if you want to shift to measure mode without taking notice of the modifications made before, you just have to press "ESC" (PC) or "SHIFT + DEL" (PSION) key.

During configuration, if sum has been chosen, device calculate:

- channels mean for voltage, current and frequency.
- channels sum for power and energy.
- channels result for $\cos \varphi$.

2) Language:

Languages possibilities are:

- French,
- English.

3) Caliber:

On inputs voltage, 2 calibers are available in standard. To use one of twos, just select it in configuration:

- voltage 125 V,
- voltage 500 V.

4) Network:

Network wiring possibilities are:

- in alternating current:
- monophase,
 - balanced triphase without neutral,
 - balanced triphase with neutral,
 - unbalanced triphase without neutral,
 - unbalanced triphase with neutral.
 - 1 channel,
 - 2 channels,
 - 3 channels.

It is also necessary to configure:

- in direct current:

- PT ratio (potential transformer),
- CT ratio (current transformer).

5) Energy:

In this menu, it is possible to:

- validate energies reset access by front side push-buttons.
- reset all the energies.
- Warning: all energies are definitely reseted.

6) <u>Time:</u>

6.1) Energy meter:

It is possible to use energy meters in two process modes, in meter per phases or in meter per time ranges.

- meter per phases:

- energy meter 1 for phase 1.
- energy meter 2 for phase 2.
- energy meter 3 for phase 3.
- energy meter 4 for phase sum.
- meter per time ranges:
 - energy meter 1 for off peak hours time range,
 - energy meter 2 for on peak hours time range,
 - energy meter 3 for peak hours time range,
 - energy meter 4 for time range sum.

The **time range** mode has 2 process modes, off peak hours - on peak hours or off peak hours - on peak hours - peak hours. If no time range is valided, device is in **meter per phases**.

6.2) Time ranges:

The time ranges "on peak hours" and "peak hours" are validing and configuring by start and end hour of time range. On the outside of these time range, the counters "off peak hours" are used. The time range "peak hours" can be insered, juxtaposed or detached of time range "on peak hours". The end of time range must be posterior to the time range start. The time ranges control is made over a range which begins at 0 h 00 mn and finishes at 23 h 59 mn.

The time ranges configuration is composed of 4 rubrics:

- present hour:

control of present hour with hours and minutes acquisition.

- on peak hour:

• "Yes": validate the process in **"time range"**, validate the "on peak hours" time range and give the control access. The device functions in off peak hours - on peak hours.

• "No": unvalidate the process in "time range". The device functions in meter per phases.

- peak hour 1:

• "Yes": validate the first time range "peak hours" and give control access. The device functions in off peak hours - on peak hours - peak hours.

• "No": unvalidate the time range "peak hours". The device functions in off peak hours - on peak hours.

- peak hour 2:

• "Yes": validate the second time range "peak hours" and give control access.

• "No": unvalidate the second time range "peak hours".

7) <u>Slots:</u>

7.1) Analogical slot:

Analogical slot configuration is composed of 2 rubrics:

- output assignement:
 - measured value:
 - star voltage, interlinked voltage (only in 3 wattmeters),
 - current,
 - frequency,
 - cos phi,
 - active, reactive, apparent power

- consumed/generated active, inductive/capacitive reactive energy.

- measured phase, according to network configuration:
 - phase 1,
 - phase 2,
 - phase 3,
 - phases sum or mean.
- measure scale, low and high.
- output parameters:
 - type, current or voltage,
 - scale, low and high,
 - numerical filter,
 - limitation.

Numerical filter allows to smooth an analogical output, measure of which would be disrupted, fluctuating or exposed to interferences. **Limitation** allows to peak clip the output signal swing at scale configuration.

7.2) Relay slot:

Relay slot can be used in alarm, energy meter or direct control.

7.2.1) <u>Alarm:</u>

Slot relay configuration in alarm is composed of 2 rubrics:

- alarm assignement:

- measured value:
 - star voltage, interlinked voltage (only in 3 wattmeters),
 - current,
 - frequency,
 - cos $\boldsymbol{\phi},$
 - active, reactive, apparent power
 - consumed/generated active, inductive/capacitive reactive energy.
- measured phase, according to the configuration of the network:
 - phase 1,
 - phase 2,
 - phase 3
 - phases sum or mean.
- alarm parameters:
 - detection type, high or low threshold,
 - threshold,
 - hysteresis.

Detection type works in this way:

- High threshold:

alarm is active when measure is beyond threshold,

.alarm is inactive when measure is below threshold less hysteresis.

- Low threshold:

.alarm is active when measure is below threshold, .alarm is inactive when measure is beyond threshold more hysteresis.

7.2.2) Energy meter:

Relay slot configuration in energy meter is composed of 2 rubrics: - meter assignement:

• measured value:

- consumed active energy,
- generated active energy,
- inductive reactive energy,
- capacitive reactive energy,
- measured phase or time range according to network configuration:
 - phase 1 or off peak hour time range,
 - phase 2 or on peak hour time range,
 - phase 3 or peak hour time range,
 - phases or time range sum.

- counting parameters:

• impulse load value, in kvar.h or kW.h.

7.2.2) Direct control:

The relay slot in direct control is only commanded by **RS485 Modbus link**. It can function in 2 differents modes. In **permanent** mode, the relay stay in command state, waiting a new order. In **temporized** mode, the relay make the command order during a defined time at configuration, then cancel the command order at the end of this time.

7.3) Logical slot :

The logical slot has no configuration parameters. His input state, active or unactive, is visualized on the display and can be read with **RS485 Modbus link**.

7.4) <u>RS485 slot:</u>

Configuration of communication is composed of 3 rubrics:

- device address in communication network, from 1 to 255,
- speed, 600, 1200, 2400, 4800, 9600, 19200 or 38400 bauds,
- parity, even, odd or without.

Measure datas are available on differents formats:

- 32 bits floatting IEEE for measures,
- 32 integer unsigned bits for energies,

For more details, see RS485 communication Modbus chapter at the end of handbook.

INITIAL ANGLE Function reserved for experienced users.

Used only for a balanced triphase network without neutral. This function allows a wiring adaptation. Phase angle acquisition between voltage and current allows to use any voltage phase with any current phase.

To determine the initial angle, you must:

- be in measure mode,
- type "PHAS", function access code, after each code, a beep is emit,
- the message "INITIAL ANGLE" followed by initial angle value appears,
- enter the new value of angle,
- then press "ENTER" to memorize angle, message "OK !" appears.

EMC CONSIDERATION

1) Introduction:

In order to satisfy its policy as regards EMC, based on the Community directive 89/336/CE, the LOREME company takes into account the standards relative to this directive from the very start of the conception of each product.

As the devices are devised to work in industrial environments, the various tests are carried out in the sight of the EN 50081-2 and EN 50082-2 standards, in order to make out a statement of conformity.

As the devices lie in certain typical configurations during the tests, it is not possible to secure the outcomes in any possible configuration.

To ensure the best functioning possible of each device, it would be judicious to comply with several recommendations of use.

2) Recommendations of use:

2.1) General remarks:

- Comply with the recommendations of assembly indicated in the technical sheet (direction of assembly, spacing between the devices, ...).

- Comply with the recommendations of use indicated in the technical sheet (temperature range, protection index).

- Avoid dust and excessive humidity, corrosive gas, considerable sources of heat.

- Avoid disturbed environments and disruptive phenomena or elements.

- If possible, group together the instrumentation devices in a zone separated from the power and relay circuits.

- Avoid the direct proximity with considerable power distance switches, contactors, relays, thyristor power groups, ...

- Do not get closer within fifty centimetres of a device with a transmitter (walkie-talkie) of a power of 5 W, because the latter can create a field with an intensity higher than 10 V/M for a distance fewer than 50 cm.

2.2) Power supply:

- Comply with the features indicated in the technical sheet (power supply voltage, frequency, allowance of the values, stability, variations ...).

- It is better that the power supply should come from a system with section switches equipped with fuses for the instrumentation element and that the power supply line be the most direct possible from the section switch.

- Avoid using this power supply for the control of relays, of contactors, of electrogates, ...

- If the switching of thyristor statical groups, of engines, of speed variator, ... causes strong interferences on the power supply circuit, it would be necessary to put an insulation transformer especially intended for instrumentation linking the screen to earth.

- It is also important that the installation should have a good earth system and it is better that the voltage in relation to the neutral should not exceed 1V, and the resistance be inferior to 6 ohms.

- If the installation is near high frequency generators or installations of arc welding, it is better to put suitable section filters.

2.3) Inputs / Outputs:

- In harsh conditions, it is advisable to use sheathed and twisted cables whose ground braid will be linked to the earth at a single point.

- It is advisable to separate the input / output lines from the power supply lines in order to avoid the coupling phenomena.

- It is also advisable to limit the lengths of data cables as much as possible.

PC - ANALYZER LINK

DIAGRAM OF CONNECTION

Caliber choices are in function of measure.

Voltage:

Two voltage calibers are presents in device, 125 V or 500 V. Choice between them is realized in RS232 configuration.

• Current:

Two versions of the device can be made depending on current caliber, 1 or 5 A.

The caliber must be precised when ordering.

RS485 COMMUNICATION MODBUS

1) Internal structure	page 12
1.1) Presentation	page 12
1.2) Measure function	page 12
1.3) Communication Fonction	page 12
1.4) System memory	page 12
2) Communication	page 13
3) Implementation	page 13
3.1) Parametrizing	page 13
3.2) Interconnection	page 13
4) Communication time	nogo 12
4.1) Procedure	page 13
4.2) Phase measures reading	page 13
4.2) Findse medsures reading	page 14
4.4) Energies reset	page 14
4.5) Energy value writing	page 14
	page 15
5) Frames structure	page 15
5.1) Words reading	page 15
5.2) Word writing	page 15
5.3) Words writing	page 15
5.4) Exception frame	page 16
6) Communication data	page 16
, 6.1) Measures / energies reading	page 16
6.2) Energies writing	page 16
6.3) Slots reading / writing	page 16
6.3.1) Reading	page 10 page 17
6.3.2) Writing	page 17
6.4) Data format	page 17
7) Table of data	
7) Table of data	page 18
7.1) Phase 1 measures	page 18
7.2) Phase 2 measures	page 18
7.3) Phase 3 measures	page 19
7.4) Phases sum measures	page 19
7.5) Actives consumed, inductives reactives energies	page 20
7.6) Actives generated, capacitives réactives energies	page 20

1) Internal structure:

1.1) Presentation:

The device is divided in two cells. Each cell has a specific function which keeping a continuous exchange of pieces of information with the second cell. The first cell is in charge of the measure, analysis and conversion function. The second cell is in charge of the communication function. The information exchange is continuous and automatic.

1.2) Measure function:

The measure cell runs the acquisition of the different signals and calculates all the values with regards to the configuration of the device.

It also runs all the output functions (analogical, alarm, meter, RS 232). All measured or calculated parameters are stored in the system memory and are constantly refreshed.

1.3) Communication function:

The communication cell runs the RS485 communication interface in the MODBUS/JBUS protocol. It analyzes the requests of the main station and answers if the device is addressed. It draws all these datas from the system memory that can be continuously accessed.

1.4) System memory:

Each cell can continuously access the system memory. The latter has a dual access, which allows a reading/writing of the data without any possible internal conflicts.

2) Communication:

The type of used protocol is MODBUS/JBUS in RTU mode. The communication has neither header nor delimitator of frame. The detection of the frame start is made by a silence whose time is at least equal to the transmission of 3.5 bytes. It implies that a frame received can be processed only after a time equal to the silence given before. The time of this silence is directly linked to the speed of transmission of the system:

Ex: Speed 9600 bauds - no parity (10 bits/byte) Silence = $(3.5 \times 10) / 9600 = 3.64$ ms

The device starts to process the frame 3.64 ms after receiving the last byte.

Note: The time separating two bytes from a same frame must be inferior to a silence. If the user does not comply with this condition, the second byte will be considered as the first one of a new frame.

The interval of time separating the end of reception of the last byte of the question frame and the end of emission of the first byte of the answer frame (detection of frame of the main station) constitutes the answer time of the device.

This answer time Trep includes:

- the silence (time of 3.5 bytes) Ts,
- the processing of the frame Tt,
- the emission of the first byte Te1.

The time beyond which the device does not answer is called **Time out**. It depends on the transmission parameters (speed, format) and the type of the function asked (reading, writing). This time must be defined by the user and must be superior to the answer time of the device.

A complete cycle of communication includes :

- the transmission of the question frame Tq
- the answer time of the device Trep
- the transmission of the answer frame Tr

Three reasons might cause a **time out**:

- wrong transmission data at the time of the question frame
- wrong configuration of the time out on the main station
- dependent station out-of-order.

3) Implementation:

3.1) Parametrizing:

Before starting up the RS485 MODBUS/JBUS communication, make sure that:

- the speed of transmission is identical between the dependent stations (LOREME devices) and the main station.
- the parity is identical between the dependent stations (LOREME devices) and the main station.
- the addresses are correctly distributed among the dependent stations (LOREME devices), no identical addresses for two dependent stations.
- the time out is correctly adjusted on the main station.

All the parameters of speed, parity and address must be configured on the devices with the RS232 link.

The possibilities of configuration of the devices are the following ones:

- address: from 1 to 255
- speed: 600, 1200, 2400, 4800, 9600, 19200, 38400 bauds
- parity: even, odd, without.

3.2) Interconnection:

The RS485 interface used allows to connect 128 dependent stations on the same network. For better operating conditions (noise immunity), the network will have to be made up of a twisted pair.

4) Communication time:

4.1) Procedure:

Analysis of the times of communication for parameters of data transmission and for particular cases.

- measures phase reading, energy reading,
- energy reset, energy value writing,
- speed: 9600 bauds, parity: none.

4.2) Phase measures reading:

Reading of 16 words (32 bytes) from address \$0FFE to \$100D (phase 1)

The processing time Tt is fixed. It depends neither on the speed nor on the format of transmission. Consequently, for new parameters of transmission, all the times are going to change but for Tt.

To set the **time out** of the system, you just have to calculate the answer time Trep of the dependent station according to the parameters of communication. For a total reading of the phase, the time of cycle of the system is about 90 ms.

4.3) Energies reading:

Reading of 16 words, 32 bytes, of the address \$5000 to \$500F (positives energies).

- 8 bytes question frame
- Silence
- Processing
- Emission 1st byte
- Answer time
- te $Te1 = (1 \times 10) / 9600 = 1.04 \text{ ms}$
 - Trep = Ts + Tt + Te1 = 44.68 ms tes) $Tr = [(33 - 1) \times 10] / 9600 = 37.5 ms$

Tt = 40 ms

- Answer frame (37 bytes)Complete cycle
- $T_{cyc} = T_q + T_{rep} + T_r = 90.5 \text{ ms}$

 $Tq = (8 \times 10) / 9600 = 8.33 \text{ ms}$

 $Ts = (3.5 \times 10) / 9600 = 3.64 \text{ ms}$

The processing time Tt is fixed. It depends neither on the speed nor on transmission format. Consequently, for new parameters of transmission, all the times are going to change but for Tt.

To set the **time out** of the system, you just have to calculate answer time Trep of the dependent station according to the parameters of communication. For a total phase reading, the system time cycle is about 90 ms.

4.4) Energies reset:

Reset of all energies, consumed and generated actives, inductives and capacitive reactives, by writing of \$55AA at the address \$7000.

- 8 bytes question frame $Tq = (8 \times 10) / 9600 = 8.33 \text{ ms}$

- silence $Ts = (3.5 \times 10) / 9600 = 3.64 \text{ ms}$

- processingTt = 40 ms- emission 1st byte $Te1 = (1 \times 10) / 9600 = 1.04 \text{ ms}$ answer timeTrep = Ts + Tt + Te1 = 44.68 ms
- 8 bytes answer frame Tr = [(8 1) x 10] / 9600 = 7.29 ms
- complete cycle Tcyc = Tq + Trep + Tr = 60.3 ms

The processing time Tt is fixed. It depends neither on the speed nor on the format of transmission. Consequently, for new parameters of transmission, all the times are going to change but for Tt.

To set the **time out** of the system, you just have to calculate the answer time Trep of the dependent station according to the parameters of communication. For a complete reset of the energies, the time of cycle of the system is about 60 ms.

4.5) Energy value writing:

Writing of one energy value at once, active consumed or generated, reactive inductive or capacitive energy on the sum of the channels. Writting of 2 words, 4 bytes, at the adress \$500C (active consummed energy).

The processing time Tt is fixed. It depends neither on the speed nor on the format of transmission. Consequently, for new parameters of transmission, all the times are going to change but for Tt.

To set the **time out** of the system, you just have to calculate the answer time Trep of the dependent station according to the parameters of communication. For a writing of energy value, the time of cycle of the system is about 65 ms.

5) Frames structure:

5.1)	<u>Words</u>	readir	<u>ig:</u>

Function code used: \$03 or \$04	
Phase 1 table reading:	address \$0FFE to \$100D
Phase 2 table reading:	address \$1FFE to \$200D
Phase 3 table reading:	address \$2FFE to \$300D
Sum phase measure reading:	address \$3FFE to \$400D

Consumed and inductive energy reading: addr Generated and capacitive energy reading: addr Slots reading addr

address \$5000 to \$500F address \$6000 to \$600F address \$8000

Question: length of frame 8 bytes.

Address	Function Code	Address 1st wo PF Pf	Number of words PF Pf	CRC16 Pf PF
1	1	2	2	2

Answer: length of frame 5 bytes + number of read bytes.

Address	Function Code	Number of bytes	V Value of the words	CRC16 Pf PF
1	1	1	number of red bytes	2

5.2) Word writing:

Function code used: \$06		
Slot state writing	Address \$8000	Value \$XXXX
Reset of all the energies:	Address \$7000	Value \$55AA

Question: length of frame 8 bytes

Address	Function Code	Address word PF Pf	Value word PF Pf	CRC16 Pf PF
1	1	2	2	2

Answer: length of frame 8 bytes

Address	Function Code	Address PF	word Pf	Value PF	word Pf	CR(Pf	C16 PF
1	1	2		2		2	

5.3) Words writing:

Function code used: \$10Active consumed energy:address \$500C,Active generated energy:address \$500E,Reactive inductive energy:address \$600C,Reactive capacitive energy:address \$600E.

Question: length of frame 9 bytes + number of written bytes.

Address	Function code	Address 1st word PF Pf	Number of word PF Pf	Nr. of bytes	Value of the words	CRC16 Pf PF
1	1	2	2	1 nui	mber of written bytes	2

Answer: length of frame 8 bytes.

	Address	Function code	Address PF	Address 1st word PF Pf		of words Pf	CRC16 Pf PF	
L	1	1	2		2			2

5.4) Exception frame:

When a physical error of transmission of a question frame occurs (CRC16 or parity), the dependent station does not answer.

If an error of frame (data address, function, value) occurs, an answer of exception will be emitted by the dependent station.

Length of frame: 5 bytes.

Address	Function	Error	CR(C16
dependent	code	code	Pf	PF
1	1	1		

Features of the exception frame:

Function code:

The function code of the exception frame is identical to the one of the question frame, but the most significant bit is set to 1 (logical or with \$80). Error code:

Error code establishes the reason of a sending of an exception frame.

Error frame \$01	Meaning Function code not used. Only the functions reading of words, \$03 / \$04, writing of a word \$06, or words \$10 are allowed.
\$02	Non-valid data address. Memory access not allowed.
\$03	Non-valid value. Value of word not allowed.

6) Communication data:

6.1) Measures / energies reading:

All measures are accessible in reading mode. Voltage, current, frequency, power, cosinus, energy on phases 1, 2, 3 and sum of phases.

Numerical values are:

- 2 words, 4 bytes, at IEEE floating 32 bits format for voltages, currents, frequencies, active, reactive, apparent powers, cosinus.

- 2 words, 4 bytes, at unsigned real integer 32 bits format for all energies (values in kW.h and kvar.h.).

Consult the enclosed tables for address details.

6.2) Energies writing:

It's possible to reset all energies by a write. Reset is made by writting \$55AA value.

Phases sum energy values are accessible individually in writing and only one value at time. Writing format is the same as reading one, unsigned 32 bits integer format.

In process without time range, the distribution of the writed energy value is realized with network configuration (monophase, triphase balanced with or without neutral, triphase unbalanced with or without neutral). For exemple, in triphase unbalanced with neutral, the energy value writing is divided equitably over 3 meters of 3 measured phases.

In process with time range, the distribution of the writed energy value is realized with the number of time ranges. For exemple, over 3 time ranges, the energy value writing is divided equitably over 3 meters of 3 time ranges.

6.3) Slots reading / writing:

The "logical" slots, "alarm relay" and "meter relay" are accessible in read-only mode. The "direct control relay" slots are accessible in read and write mode. The "analogical" slots and "RS485" are not accessible neither reading mode nor writing mode and are forced at 0.

A word, at \$8000 adress, divided in 2 parts, most significant - least significant, allows to access to slots in reading and writing mode. The most significant is called "control", and the least significant is called "state".

6.3.1) Reading:

A readind access is realized with the function code \$03 or \$04. The "control", the most signicant of the word at \$8000 address, indicates if the slots are in read-only mode (bit at 0) or in reading / writing mode (bit at 1). The least significant indicates the slots state (bit at 0 = 100, bit at 1 = 100).

Exemple:

control	b7	b6	b5	b4	b3	b2	b1	b0	\$8000 address
slot n°	8	7	6	5	4	3	2	1	most significant
value	1	0	0	1	0	0	0	1	

The bits at state 1 define the slots in reading / writing mode (8, 5, 1), the others (7, 6, 4, 3 and 2) are in reading mode.

state	b7	b6	b5	b4	b3	b2	b1	b0	\$8000 adress
slot n°	8	7	6	5	4	3	2	1	least significant
value	0	0	0	1	1	1	0	0	

The slots 5, 4 and 3 are at high states, the slots 8, 7, 6, 2 and 1 are at low state.

6.3.2) Writing:

A writing access is realized with the function code \$06. The "control", the most signicant of the word at \$8000 address, will define the slot(s) which we want to write (bit at 1), the others are not concerned by the writing process (bit at 0). The least significant indicates the slots writing state (bit at $0 = 10^{\circ}$, bit at $1 = 10^{\circ}$).

Exemple:

control	b7	b6	b5	b4	b3	b2	b1	b0	\$8000 address
n° slot	8	7	6	5	4	3	2	1	most significant
valeur	1	0	0	0	0	0	0	1	

The writing is request on the slots 8 and 1, the others are not concerned.

state	b7	b6	b5	b4	b3	b2	b1	b0	\$8000 address
slot n°	8	7	6	5	4	3	2	1	least significant
value	1	Х	Х	Х	Х	Х	Х	0	

The writing state for the slot 8 is high, this for the slot 1 is low. The other state bits have no effects.

6.4) Data format:

- Data at floating IEEE 32 bits format.

Data transmitted with most significant byte first, composed of 4 bytes, 2 words.

- Data at the format integer 32 bits.

Data transmitted with most significant byte first, composed of 4 bytes, 2 words.

 Writting datas of energy reset is a hexadecimal code. This code is composed of 2 bytes, 1 word.
 Code \$55AA: reset of all the energies.

- The writing data for slots writing is a binary code. This code is composed of 2 bytes, 1 word which defines control and state of slots (see previous chapter).

7) <u>Table of data:</u> 7.1) <u>Phase 1 measures:</u>

Words address				Tota	I
	b7 b6 b5 b4	4 b3 b2	b1 b0	Word	Byte
\$0FFE	Interlinked voltage	Byte 1	Word 1	1	1
		Byte 2			2
\$0FFF		Byte 3	Word 2	2	3
		Byte 4			4
\$1000	Star voltage	Byte 1	Word 1	3	5
		Byte 2			6
\$1001		Byte 3	Word 2	4	7
		Byte 4			8
\$1002	Current	Byte 1	Word 1	5	9
		Byte 2			10
\$1003		Byte 3	Word 2	6	11
		Byte 4			12
\$1004	Frequency	Byte 1	Word 1	7	13
		Byte 2			14
\$1005		Byte 3	Word 2	8	15
		Byte 4			16
\$1006	Active power	Byte 1	Word 1	9	17
		Byte 2			18
\$1007		Byte 3	Word 2	10	19
		Byte 4			20
\$1008	Reactivepower	Byte 1	Word 1	11	21
		Byte 2			22
\$1009		Byte 3	Word 2	12	23
		Byte 4			24
\$100A	Apparentpower	Byte 1	Word 1	13	25
		Byte 2			26
\$100B		Byte 3	Word 2	14	27
		Byte 4			28
\$100C	Cosinus phi	Byte 1	Word 1	15	29
		Byte 2			30
\$100D		Byte 3	Word 2	16	31
		Byte 4			32

7.2) Phase 2 measures:

b7 b6 b5 b4 b2 b1 b0 Word Byte \$1FFE Interlinked voltage Byte 1 Word 2 2 3 \$1FFF Byte 3 Word 2 2 3 \$2000 Star voltage Byte 1 Word 1 3 5 \$2001 Byte 3 Word 2 4 7 Byte 4 8 8 6 1 3 5 \$2001 Byte 3 Word 2 4 7 6 \$2002 Current Byte 1 Word 1 5 9 9 \$2003 Byte 3 Word 2 6 11 1 1 1 \$2003 Byte 3 Word 1 5 9 10 1 1 1 1 \$2004 Frequency Byte 1 Word 1 7 13 1 1 1 1 1 1 1 1 1 1 1 1 1	Words address							Tota	al
Byte 2 2 \$1FFF Byte 3 Word 2 2 3 Byte 4 4 4 4 \$2000 Star voltage Byte 1 Word 1 3 5 Byte 2 6 5 6 5 6 \$2001 Byte 3 Word 2 4 7 Byte 4 8 5 9 6 \$2002 Current Byte 1 Word 1 5 9 Byte 4 12 5 9 10 12 \$2003 Byte 3 Word 2 6 11 12 \$2004 Frequency Byte 1 Word 1 7 13 Byte 4 12 14 12 14 \$2005 Byte 3 Word 2 8 15 Byte 4 10 19 17 13 14 \$2006 Active power Byte 1 Word 1 11 21 Byte 2 10		b7 b6	b5 b	4 b3	b2	b1	b0	Word	Byte
\$1FFF Byte 3 Word 2 2 3 Byte 4 4 4 \$2000 Star voltage Byte 1 Word 1 3 5 Byte 2 6 6 6 7 6 \$2001 Byte 3 Word 2 4 7 Byte 4 8 8 2002 Current Byte 1 Word 1 5 9 Byte 2 10 Byte 2 10 10 11 12 10 \$2003 Byte 3 Word 2 6 11 11 11 11 Byte 4 12 10 17 13 13 16 15 \$2004 Frequency Byte 1 Word 1 7 13 16 11 Byte 2 14 14 10 19 17 13 16 11 11 11 21 10 19 17 19 16 11 21 22 10 19 17 13 25 16 11 21 23 22 2	\$1FFE	Interlinke	ed voltage	e Byte	1	Wo	ord 1	1	1
Byte 4 4 \$2000 Star voltage Byte 1 Word 1 3 5 Byte 2 6 6 6 6 \$2001 Byte 3 Word 2 4 7 Byte 4 8 7 6 8 \$2002 Current Byte 1 Word 1 5 9 Byte 2 10 10 5 9 10 \$2003 Byte 3 Word 2 6 11 Byte 4 12 10 10 10 \$2003 Byte 3 Word 1 7 13 \$2004 Frequency Byte 4 12 14 \$2005 Byte 3 Word 2 8 15 Byte 4 16 14 16 17 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 10 19 12 23 \$2007 Byte 3 Word 2 10 </td <td></td> <td></td> <td></td> <td>Byte 2</td> <td>2</td> <td></td> <td></td> <td></td> <td>2</td>				Byte 2	2				2
\$2000 Star voltage Byte 1 Word 1 3 5 \$2001 Byte 3 Word 2 4 7 Byte 3 Word 2 4 7 Byte 4 8 8 2002 Current Byte 1 Word 1 5 9 \$2003 Byte 3 Word 2 6 11 12 \$2003 Byte 3 Word 1 7 13 \$2004 Frequency Byte 1 Word 1 7 13 \$2005 Byte 3 Word 2 8 15 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 10 19 17 18 \$2006 Active power Byte 1 Word 1 9 17 Byte 3 Word 2 10 19 11 21 \$2006 Reactive power Byte 1 Word 1 11 21 Byte 4 20 10 19 2 22 22 22 22 20 22 22 22	\$1FFF			Byte	3	Wc	ord 2	2	3
Byte 2 6 \$2001 Byte 3 Word 2 4 7 Byte 4 Byte 4 8 5 9 \$2002 Current Byte 1 Word 1 5 9 \$2003 Byte 3 Word 2 6 11 \$2003 Byte 3 Word 2 6 11 \$2003 Byte 3 Word 1 7 13 \$2004 Frequency Byte 1 Word 1 7 13 \$2005 Byte 3 Word 2 8 15 Byte 4 16 14 14 14 \$2006 Active power Byte 1 Word 1 9 17 Byte 4 10 19 11 21 14 \$2006 Active power Byte 1 Word 1 11 21 \$2007 Byte 3 Word 2 10 19 12 23 \$2008 Reactive power Byte 1 Word 1 13 25 <td></td> <td></td> <td></td> <td>Byte 4</td> <td>4</td> <td></td> <td></td> <td></td> <td>4</td>				Byte 4	4				4
\$2001 Byte 3 Word 2 4 7 Byte 4 8 \$2002 Current Byte 1 Word 1 5 9 Byte 2 10 11 5 9 10 \$2003 Byte 3 Word 2 6 11 Byte 4 12 12 12 \$2004 Frequency Byte 1 Word 1 7 13 Byte 2 14 14 14 14 14 \$2005 Byte 3 Word 2 8 15 Byte 4 16 14 16 14 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 10 19 11 11 11 S2007 Byte 3 Word 2 10 19 11 11 21 \$2008 Reactive power Byte 1 Word 1 111 21 22 23 12 23 Byte 2 2 2 2 24 24 24 24 24	\$2000	Star volta	age	Byte	1	Wo	ord 1	3	5
Byte 4 8 \$2002 Current Byte 1 Word 1 5 9 Byte 2 10 Byte 2 10 10 \$2003 Byte 3 Word 2 6 11 Byte 4 12 12 12 \$2004 Frequency Byte 1 Word 1 7 13 Byte 2 14 12 14 12 \$2004 Frequency Byte 1 Word 1 7 13 Byte 2 14 14 14 14 14 \$2005 Byte 3 Word 2 8 15 15 Byte 4 16 16 16 17 18 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 3 Word 2 10 19 17 Byte 4 20 10 19 11 11 21 \$2008 Reactive power Byte 1 Word 1 13				Byte 2	2				6
\$2002 Current Byte 1 Word 1 5 9 \$2003 Byte 3 Word 2 6 11 \$2003 Byte 3 Word 2 6 11 \$2004 Frequency Byte 1 Word 1 7 13 \$2005 Byte 3 Word 2 8 15 Byte 4 16 16 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 10 19 19 10 19 \$2006 Active power Byte 1 Word 2 10 19 \$2007 Byte 3 Word 2 10 19 \$2008 Reactive power Byte 1 Word 1 11 21 \$2009 Byte 3 Word 2 12 23 23 \$2009 Byte 3 Word 1 13 25 \$2008 Byte 3 Word 1 13 25 \$2008 Byte 3 Word 1 15 29 \$2000 Byte 4 20 30 <td>\$2001</td> <td></td> <td></td> <td>Byte</td> <td>3</td> <td>Wo</td> <td>ord 2</td> <td>4</td> <td>7</td>	\$2001			Byte	3	Wo	ord 2	4	7
Byte 2 10 \$2003 Byte 3 Word 2 6 11 Byte 4 12 12 12 \$2004 Frequency Byte 1 Word 1 7 13 Byte 2 14 14 14 14 14 \$2005 Byte 3 Word 2 8 15 14 \$2006 Active power Byte 1 Word 1 9 17 Byte 3 Word 2 10 19 17 Byte 3 Word 2 10 19 S2007 Byte 3 Word 2 10 19 S2008 Reactive power Byte 1 Word 1 11 21 Byte 4 20 10 19 11 21 22 \$2008 Reactive power Byte 1 Word 1 11 21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23				Byte 4	4				8
\$2003 Byte 3 Word 2 6 11 Byte 4 12 \$2004 Frequency Byte 1 Word 1 7 13 Byte 2 14 14 14 14 \$2005 Byte 3 Word 2 8 15 Byte 4 16 16 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 10 19 17 Byte 3 Word 2 10 19 \$2007 Byte 3 Word 1 11 21 Byte 4 20 10 19 11 21 \$2007 Byte 3 Word 2 10 19 11 21 \$2008 Reactive power Byte 1 Word 1 11 21 22 22 22 22 22 22 22 23 24 24 24 24 24 24 24 24 25 26 26 22 26 26 22 26 26 200	\$2002	Current		Byte	1	Wc	ord 1	5	9
Byte 4 12 \$2004 Frequency Byte 1 Word 1 7 13 Byte 2 14 \$2005 Byte 3 Word 2 8 15 S2006 Active power Byte 1 Word 1 9 17 S2006 Active power Byte 1 Word 1 9 17 S2007 Byte 3 Word 2 10 19 S2008 Reactive power Byte 1 Word 1 11 21 S2009 Byte 3 Word 2 12 23 22 \$2009 Byte 3 Word 2 12 23 24 \$2008 Reactive power Byte 1 Word 1 13 25 S200A Apparent power Byte 1 Word 2 14 27 Byte 2 26 200 26 28 200 26 \$200B Byte 3 Word 1 15 29 29 30 30 30 30 <				Byte 2	2				10
\$2004 Frequency Byte 1 Word 1 7 13 Byte 2 Byte 3 Word 2 8 15 Byte 3 Word 1 9 17 Byte 4 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 16 16 16 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 10 19 17 Byte 3 Word 2 10 19 Byte 4 20 10 19 \$2008 Reactive power Byte 1 Word 1 11 21 Byte 2 2 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 24 24 24 24 24 24 24 24 25 26 26 200 Byte 3 Word 1 13 25 26 200 200 Byte 4	\$2003			Byte	3	Wo	ord 2	6	11
Byte 2 14 \$2005 Byte 3 Word 2 8 15 Byte 4 16 16 16 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 16 10 19 17 Byte 2 18 10 19 10 19 \$2007 Byte 3 Word 2 10 19 \$2008 Reactive power Byte 1 Word 1 11 21 \$2009 Byte 3 Word 2 12 23 12 23 \$2009 Byte 4 24 24 24 24 24 \$200A Apparent power Byte 1 Word 1 13 25 26 \$200B Byte 3 Word 2 14 27 26 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 30 30 30 30 30 </td <td></td> <td></td> <td></td> <td>Byte 4</td> <td>4</td> <td></td> <td></td> <td></td> <td>12</td>				Byte 4	4				12
\$2005 Byte 3 Word 2 8 15 Byte 4 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 10 19 17 Byte 3 Word 2 10 19 \$2007 Byte 3 Word 2 10 19 \$2007 Byte 4 20 20 20 \$2008 Reactive power Byte 1 Word 1 11 21 \$2009 Byte 3 Word 2 12 23 Byte 4 24 24 24 \$200A Apparent power Byte 1 Word 1 13 25 Byte 4 20 2 26 26 26 \$200B Byte 3 Word 2 14 27 Byte 4 28 200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 30 Byte 3 Word 2 16 31	\$2004	Frequen	су	Byte	1	Wc	ord 1	7	13
Byte 4 16 \$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 \$2007 Byte 3 Word 2 10 19 \$2007 Byte 3 Word 2 10 19 20 \$2008 Reactive power Byte 4 20 \$2008 Reactive power Byte 1 Word 1 11 21 21 23 22 \$2009 Byte 3 Word 2 12 23 23 24 \$2004 Apparent power Byte 4 24 \$200A Apparent power Byte 1 Word 1 13 25 26 \$200B Byte 3 Word 2 14 27 26 26 \$200B Byte 4 28 \$200C Cosinus phi Byte 1 Word 1 15 29 30 30 \$200D Byte 3 Word 2 16 31				Byte	2				14
\$2006 Active power Byte 1 Word 1 9 17 Byte 2 18 17 18 18 18 \$2007 Byte 3 Word 2 10 19 \$2008 Reactive power Byte 4 20 \$2008 Reactive power Byte 1 Word 1 11 21 Byte 2 22 22 22 22 22 \$2009 Byte 3 Word 2 12 23 Byte 4 24 24 24 \$200A Apparent power Byte 1 Word 1 13 25 Byte 2 26 26 26 26 26 \$200B Byte 3 Word 2 14 27 Byte 4 28 200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 Byte 3 Word 2 16 31	\$2005			Byte	3	Wc	ord 2	8	15
Byte 2 18 \$2007 Byte 3 Word 2 10 19 Byte 4 20 10 19 20 \$2008 Reactive power Byte 1 Word 1 11 21 Byte 2 22 22 22 22 22 22 \$2009 Byte 3 Word 2 12 23 23 24 \$2009 Byte 3 Word 1 13 25 24 24 \$200A Apparent power Byte 1 Word 1 13 25 26 \$200B Byte 3 Word 2 14 27 26 \$200B Byte 4 28 28 26 28 28 200C Cosinus phi Byte 1 Word 1 15 29 30 </td <td></td> <td></td> <td></td> <td>Byte 4</td> <td>4</td> <td></td> <td></td> <td></td> <td>16</td>				Byte 4	4				16
\$2007 Byte 3 Word 2 10 19 Byte 4 20 \$2008 Reactive power Byte 1 Word 1 11 21 \$2009 Byte 3 Word 2 22 22 \$2009 Byte 3 Word 2 12 23 \$2004 Apparent power Byte 1 Word 1 13 25 Byte 2 26 Byte 3 Word 2 14 27 \$2008 Byte 3 Word 2 14 27 Byte 4 28 200 28 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 Byte 3 Word 2 16 31	\$2006	Active pc	wer	Byte	1	Wc	ord 1	9	17
Byte 4 20 \$2008 Reactive power Byte 1 Word 1 11 21 Byte 2 22 22 22 22 22 \$2009 Byte 3 Word 2 12 23 Byte 4 24 24 24 \$200A Apparent power Byte 1 Word 1 13 25 Byte 2 26 26 26 26 26 \$200B Byte 3 Word 2 14 27 Byte 4 28 200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 3200D Byte 3 Word 2 16 31				Byte	2				18
\$2008 Reactive power Byte 1 Word 1 11 21 Byte 2 Byte 3 Word 2 12 23 \$2009 Byte 3 Word 2 12 23 Byte 4 24 24 24 \$200A Apparent power Byte 1 Word 1 13 25 Byte 2 26 Byte 2 26 26 \$200B Byte 3 Word 2 14 27 Byte 4 28 28 28 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 30 30 30 30	\$2007			Byte	3	Wc	ord 2	10	19
Byte 2 22 \$2009 Byte 3 Word 2 12 23 Byte 3 Word 2 12 23 Byte 4 24 24 \$200A Apparent power Byte 1 Word 1 13 25 Byte 2 26 26 26 26 \$200B Byte 3 Word 2 14 27 Byte 4 28 28 28 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 30 30 30 30				Byte 4	4				20
\$2009 Byte 3 Word 2 12 23 Byte 4 24 24 24 \$200A Apparent power Byte 1 Word 1 13 25 Byte 2 26 26 26 26 \$200B Byte 3 Word 2 14 27 Byte 4 28 28 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 30 30 30 30	\$2008	Reactive	power	Byte	1	Wc	ord 1	11	21
Byte 4 24 \$200A Apparent power Byte 1 Word 1 13 25 Byte 2 26 Byte 3 Word 2 14 27 \$200B Byte 3 Word 2 14 27 Byte 4 28 28 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 Byte 3 Word 2 16 31				Byte	2				22
\$200A Apparent power Byte 1 Word 1 13 25 Byte 2 26 26 26 26 26 26 26 27 26 27 26 28 27 28 28 28 28 28 28 28 28 28 28 28 29 28 29 28 29 29 30 <	\$2009			Byte	3	Wc	ord 2	12	23
Byte 2 26 \$200B Byte 3 Word 2 14 27 Byte 4 28 28 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 30 31 30				Byte 4	4				24
\$200B Byte 3 Word 2 14 27 Byte 4 28 28 28 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 30 31 30 31	\$200A	Apparen	tpower	Byte	1	Wo	ord 1	13	25
Byte 4 28 \$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 \$200D Byte 3 Word 2 16 31				Byte	2				
\$200C Cosinus phi Byte 1 Word 1 15 29 Byte 2 30 \$200D Byte 3 Word 2 16 31	\$200B			Byte :	3	Wc	ord 2	14	27
Byte 2 30 \$200D Byte 3 Word 2 16 31				Byte 4	4				28
\$200D Byte 3 Word 2 16 31	\$200C	Cosinus	phi	Byte	1	Wc	ord 1	15	
				•					
Byte / 32	\$200D			5		Wc	ord 2	16	
Dyte 4JZ				Byte 4	4				32

7.3) Phase 3 measures:

Words address				Tota	l
	b7 b6 b5 b	4 b3 b2	b1 b0	Word	Byte
\$2FFE	Interlinked voltage	e Byte 1	Word 1	1	1
		Byte 2			2
\$2FFF		Byte 3	Word 1	2	3
		Byte 4			4
\$3000	Star voltage	Byte 1	Word 1	3	5
		Byte 2			6
\$3001		Byte 3	Word 2	4	7
		Byte 4			8
\$3002	Current	Byte 1	Word 1	5	9
		Byte 2			10
\$3003		Byte 3	Word 2	6	11
		Byte 4			12
\$3004	Frequency	Byte 1	Word 1	7	13
		Byte 2			14
\$3005		Byte 3	Word 2	8	15
		Byte 4			16
\$3006	Active power	Byte 1	Word 1	9	17
		Byte 2			18
\$3007		Byte 3	Word 2	10	19
		Byte 4			20
\$3008	Reactivepower	Byte 1	Word 1	11	21
		Byte 2			22
\$3009		Byte 3	Word 2	12	23
		Byte 4			24
\$300A	Apparentpower	Byte 1	Word 1	13	25
		Byte 2			26
\$300B		Byte 3	Word 2	14	27
		Byte 4			28
\$300C	Cosinus phi	Byte 1	Word 1	15	29
		Byte 2			30
\$300D		Byte 3	Word 2	16	31
		Byte 4			32

7.4) Phase sum measures:

Words address	i						Tota	al
	b7 b6	b5 b4	4 b3	b2	b1	b0	Word	Byte
\$3FFE	Interlinke	ed voltage	Byte	1	Wc	ord 1	1	1
			Byte 2	2				2
\$3FFF			Byte 3	3	Wc	ord 1	2	3
			Byte 4	4				4
\$4000	Star volta	age	Byte	1	Wc	ord 1	3	5
			Byte 2	2				6
\$4001			Byte :	3	Wc	ord 2	4	7
			Byte 4	4				8
\$4002	Current		Byte	1	Wc	ord 1	5	9
			Byte 2	2				10
\$4003			Byte	3	Wc	ord 2	6	11
			Byte 4					12
\$4004	Frequen	су	Byte	1	Wc	ord 1	7	13
			Byte 2	2				14
\$4005			Byte :	3	Wc	ord 2	8	15
			Byte 4	4				16
\$4006	Active po	ower	Byte	1	Wc	ord 1	9	17
			Byte					18
\$4007			Byte :		Wc	ord 2	10	19
			Byte 4					20
\$4008	Reactive	power	Byte		Wc	ord 1	11	21
			Byte					22
\$4009			Byte		Wc	ord 2	12	23
			Byte 4					24
\$400A	Apparen	tpower	Byte		Wc	ord 1	13	25
			Byte					26
\$400B			Byte		Wc	ord 2	14	27
			Byte 4					28
\$400C	Cosinus	phi	Byte		Wc	ord 1	15	29
• • • • = =			Byte					30
\$400D			Byte		Wc	ord 2	16	31
			Byte	4				32

7.5) Actives consumed, inductives reactives energies:

Words adress				Tota	I
	b7 b6 b5 b4	4 b3 b2	b1 b0	Words	Bytes
\$5000	Active energy	Byte 1	Word 1	1	1
	consumed	Byte 2			2
\$5001	phase 1	Byte 3	Word 2	2	3
		Byte 4			4
\$5002	Reactive energy	Byte 1	Word 1	3	5
	inductive	Byte 2			6
\$5003	phase 1	Byte 3	Word 2	4	7
		Byte 4			8
\$5004	Active Energy	Byte 1	Word 1	5	9
	consumed	Byte 2			10
\$5005	phase 2	Byte 3	Word 2	6	11
		Byte 4			12
\$5006	Reactiveenergy	Byte 1	Word 1	7	13
	inductive	Byte 2			14
\$5007	phase 2	Byte 3	Word 2	8	15
		Byte 4			16
\$5008	Active energy	Byte 1	Word 1	9	17
	consumed	Byte 2			18
\$5009	phase 3	Byte 3	Word 2	10	19
		Byte 4			20
\$500A	Reactive energy	Byte 1	Word 1	11	21
	inductive	Byte 2			22
\$500B	phase 3	Byte 3	Word 2	12	23
		Byte 4			24
\$500C	Active energy	Byte 1	Word 1	13	25
	consumed	Byte 2			26
\$500D	phases sum	Byte 3	Word 2	14	27
		Byte 4			28
\$500E	Reactive energy	Byte 1	Word 1	15	29
· _	inductive	Byte 2			30
\$500F	Phases sum	Byte 3	Word 2	16	31
		Byte 4			32

7.6) Actives generated, capacitives réactives energies:

Words adress			· · · · · · · · · · · · · · · · · · ·	Tota	1
	b7 b6 b5	b4 b3 b2	b1 b0	Words	Bytes
\$6000	Active energy	Byte 1	Word 1	1	1
	generated	Byte 2			2
\$6001	phase 1	Byte 3	Word 2	2	3
		Byte 4			4
\$6002	Reactive energ	y Byte 1	Word 1	3	5
	capacitive	Byte 2			6
\$6003	phase 1	Byte 3	Word 2	4	7
		Byte 4			8
\$6004	Active energy	Byte 1	Word 1	5	9
	generated	Byte 2			10
\$6005	phase 2	Byte 3	Word 2	6	11
		Byte 4			12
\$6006	Reactive energ		Word 1	7	13
	capacitive	Byte 2			14
\$6007	phase 2	Byte 3	Word 2	8	15
		Byte 4			16
\$6008	Active energy	Byte 1	Word 1	9	17
	generated	Byte 2			18
\$6009	phase 3	Byte 3	Word 2	10	19
		Byte 4			20
\$600A	Reactive enegy		Word 1	11	21
	capacitive	Byte 2			22
\$600B	phase 3	Byte 3	Word 2	12	23
		Byte 4			24
\$600C	Active energy	Byte 1	Word 1	13	25
	generated	Byte 2			26
\$600D	Phases sum	Byte 3	Word 2	14	27
		Byte 4			28
\$600E	Reactive energ		Word 1	15	29
	capacitive	Byte 2			30
\$600F	Phases sum	Byte 3	Word 2	16	31
		Byte 4			32